

^/���,�/E��Z/�'��^��hZ/dz�
�^^�^^D�Ed
March 23, 2022

Prepared For:

Rob Kornacki, Milkomeda Foundation

Prepared By:

John Bird

Chris Masden

TABLE OF CONTENTS

VULNERABILITY STATISTICS .. 4

Severity Breakdown .. 4

FIXES SUMMARY.. 4

EXECUTIVE SUMMARY .. 5

FINDINGS ... 6

MEDIUM SEVERITY... 6

[M1] Implementation contract should not be able to receive wADA .. 6
[M2] No checks on minimum validator count .. 6

[M3] Lack of address sanity checks... 7

LOW SEVERITY .. 8

[L1] Implementation set but not initialized... 8

[L2] Lack of event emissions.. 8
[L3] Possibly dangerous distribution of rewards.. 9
[L4] Unimplemented TODOs .. 9

[L5] voteForTransaction can fail without any indication ... 10

NOTE SEVERITY ... 12

[N1] Functions can be marked external ... 12

[N2] Incorrect require statement ... 13

[N3] Contracts not optimized before deployment ... 13

[N4] Inconsistent use of token receiver contracts ... 14
[N5] Not following checks-effects-interactions pattern .. 14

[N6] Not following naming conventions .. 15
[N7] Unstructured storage proxies .. 15
[N8] Gas savings ... 15
[N9] Typographical Errors .. 18

APPENDIX A Ȃ SEVERITY DEFINITIONS ... 20

APPENDIX B Ȃ LIST OF FILES IN SCOPE .. 21

VULNERABILITY STATISTICS

SEVERITY BREAKDOWN

Severity Count

Critical 0

High 0

Medium 3

Low 5

Note 9

Total 17

FIXES SUMMARY

Finding Severity Status

M1 Medium Fixed in pull request #816

M2 Medium Not an issue

M3 Medium Fixed in pull request #817

L1 Low Fixed in pull request #887

L2 Low Not fixed

L3 Low Not fixed

L4 Low Fixed in pull requests #818, #821, and #886

L5 Low Fixed in pull request #874

N1 Note Fixed in pull request #883

N2 Note Fixed in pull request #819

N3 Note Not fixed

N4 Note Not fixed. Acknowledged in pull request #854

N5 Note Fixed in pull request #856

N6 Note Fixed in pull request #891

N7 Note Fixed in pull request #853

N8 Note Not fixed

N9 Note Fixed in pull request #820

https://github.com/dcSpark/milkomeda-validator/pull/816
https://github.com/dcSpark/milkomeda-validator/pull/817
https://github.com/dcSpark/milkomeda-validator/pull/887
https://github.com/dcSpark/milkomeda-validator/pull/818
https://github.com/dcSpark/milkomeda-validator/pull/821
https://github.com/dcSpark/milkomeda-validator/pull/886
https://github.com/dcSpark/milkomeda-validator/pull/874
https://github.com/dcSpark/milkomeda-validator/pull/883
https://github.com/dcSpark/milkomeda-validator/pull/819
https://github.com/dcSpark/milkomeda-validator/pull/854
https://github.com/dcSpark/milkomeda-validator/pull/856
https://github.com/dcSpark/milkomeda-validator/pull/891
https://github.com/dcSpark/milkomeda-validator/pull/853
https://github.com/dcSpark/milkomeda-validator/pull/820

EXECUTIVE SUMMARY

����� ������� ��������� ���� �������� ��� ���������� ���������ǯ�� ����������� ��� ���� ����������
sidechain bridge smart contracts. The Milkomeda protocol provides cross-chain
interoperability between two blockchains. The sidechain bridge handles logic on the EVM
side of the bridge.

Two Arbitrary Execution engineers conducted this review over a 2-week period, from
February 7, 2022 to February 18, 2022. The audited tag was v1.1.0-rc1 (commit hash
860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a) in the dcSpark/milkomeda-
validator repository. The Solidity files in scope for this audit included all contracts in the
m1/contracts directory with the exception of contracts in the dev directory, and
Migrations.sol - which is an unused contract in production. The complete list of files is
in Appendix B.

Our efforts were focused on the proxy-implementation model for the bridge contract, as well
as ���� ���� ������� �������� �����ǯ� �����Ǥ� ������ ���������� ����� ��� ��������� ��� �������
Hyperledger Besu networks, so differences from Ethereum mainnet had to be accounted for.

The assessment resulted in 17 findings ranging in severity from medium to note
(informational). One of the medium findings identified a situation where wADA can become
trapped in the implementation contract. The other medium findings involve contract
deployment and removing validator nodes from the network. The low findings include an
issue with the proxy-implementation deployment and unsafe external calls. The note
findings contain some observations we felt necessary to highlight, typographical
suggestions, and opportunities for gas optimizations.

The Milkomeda bridge contracts are separated into logical components that contain NatSpec
and other in-line comments. The code is well documented and straightforward to follow.
High-level documentation is present and clear as well. The smart contract repo also contains
a Mocha unit test suite that exercises bridge functionality.

Update

At the time of the fix review, 11 findings were resolved according to our recommendations
and 1 finding was identified as a non-issue. The 5 remaining findings were not fixed. The
Milkomeda team acknowledges these findings and intends to investigate them at a later date.

FINDINGS

MEDIUM SEVERITY

[M1] IMPLEMENTATION CONTRACT SHOULD NOT BE ABLE TO RECEIVE WADA

The implementation contract Multisig.sol has a receive function that will accept wADA
but the wADA that is sent to the contract cannot be withdrawn. All interactions should be sent
via Proxy.sol which can properly receive all of the wADA.

RECOMMENDATION

Remove the receive function in Multisig.sol

UPDATE

Fixed in pull request #816.

[M2] NO CHECKS ON MINIMUM VALIDATOR COUNT

Milkomeda runs a network for its sidechain that uses an Istanbul Byzantine Fault Tolerant
(IBFT) consensus mechanism. Specifically, the Hyperledger Besu network that the
Milkomeda Bridge will be deployed on uses IBFT 2.0.

IBFT 2.0 requires a minimum of 4 validators to remain Byzantine fault tolerant.
removeValidator has no checks on validator count, and the validRequirement modifier
only checks if validatorCount is nonzero. Validators can currently vote to remove a
validator and fall below this threshold. If the network is no longer Byzantine fault tolerant,
the network may not function correctly and reach consensus despite nodes failing or
propagating incorrect information to peers.

RECOMMENDATION

Consider updating the validRequirement modifier to check if validatorCount < 4.

UPDATE

Not an issueǤ����������ǯ�����������ǣ

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L68-L69
https://github.com/dcSpark/milkomeda-validator/pull/816
https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-Protocols/IBFT/#minimum-number-of-validators
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L92
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L63
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L63

We do not think this is something we can check. It makes sense you spotted this but in
essence there is no minimum validator to have in the smart contract in relation to the
IBFT requirement. The smart contract has a set of validators that is maintained in a
different list than the IBFT. It happens to be the same person at the moment but
�����ǯ������������������������������������	��������������������������������������
Validator.

[M3] LACK OF ADDRESS SANITY CHECKS

In Proxy.sol the constructor assigns the implementation storage variable without
checking that it is non-zero and without checking that a smart contract exists at that address.

In Multisig.sol the upgradeContract function changes the implementation storage
variable without performing the above mentioned checks.

In the event of a bad address being used when deploying the proxy, a simple redeployment
of the proxy would fix this issue. In the case of upgrading from one implementation to
another, a more serious consequence could occur if a bad address is used. The funds (wADA,
ERC20, ERC721, ERC1155) would become frozen inside of the proxy contract.

RECOMMENDATION

Due to the importance of the implementation variable, consider adding the OpenZeppelin
isContract modifier on the address that implementation will be set to. The
isContract modifier would ensure that the address is non-zero and there is deployed
bytecode at the address.

UPDATE

Fixed in pull request #817.

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/proxy/Proxy.sol#L13
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L149
https://github.com/dcSpark/milkomeda-validator/pull/817

LOW SEVERITY

[L1] IMPLEMENTATION SET BUT NOT INITIALIZED

Upon deployment, the proxy sets the implementation address, but does not initialize it. The
initialization of the contract is vulnerable to front running and a malicious attacker could
initialize the contract with the settings they choose. The proxy would then have to be
redeployed as there is no way to change the implementation variable inside of the proxy
once set by the constructor.

RECOMMENDATION

Consider calling the initialize function in the constructor of Proxy.sol so that the
implementation address cannot be set without also initializing the implementation contract.

UPDATE

Fixed in pull request #887

[L2] LACK OF EVENT EMISSIONS

Multisig.sol contains various administrative functions that represent important state
changes in the contract. Certain functions do not emit events when sensitive changes are
made.

RECOMMENDATION

Consider adding the following events to aid with tracking and for notifying off-chain
observers:

AddedValidator
RemovedValidator
NewQuorum
NewStargateAddress
ContractUpgraded
TransactionRemoved
TransactionAdded

UPDATE

Not fixedǤ����������ǯ��������������������������ǣ

Acknowledged. We will investigate this at a later time.

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/proxy/Proxy.sol#L13
https://github.com/dcSpark/milkomeda-validator/pull/887

[L3] POSSIBLY DANGEROUS DISTRIBUTION OF REWARDS

In Rewards.sol the withdrawRewards function has a possible dangerous distribution
method for sending rewards to each validator by using the following code. The danger is that
a validator could be a smart contract and this is acknowledged in the comments. However,
the risk is still present.

RECOMMENDATION

Consider using the OpenZeppelin isContract modifier on the addValidator function
inside of Multisig.sol. This would drastically reduce the chance of a smart contract
being added as a validator.

UPDATE

Not fixedǤ����������ǯ��������������������������ǣ

Acknowledged. We will investigate this at a later time.

[L4] UNIMPLEMENTED TODOS

There are TODOs in Multisig.sol, SidechainBridge.sol, and Types.sol. Three in
particular are worth highlighting:

Ȉ removeValidator does not clear validator votes on pending proposals

Ȉ There is no functionality to migrate proposals in the event a validator provides bad
data in a proposal

Ȉ Tokens are not returned to users if an unwrapping request gets voted out

If these TODOs are overlooked, there is a risk that deployed code does not match the design
specification of the protocol. Implementing these features will reduce the impact of a
malicious validator, and allow users to recover funds from the bridge.

RECOMMENDATION

Consider implementing TODOs or documenting reasons for not doing so.

UPDATE
Ȉ removeValidator does not clear votes

TODO removed in pull request #818Ǥ����������ǯ��������������������������ǣ

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Rewards.sol#L24
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L97
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L279
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L178
https://github.com/dcSpark/milkomeda-validator/pull/818

 We do not need to remove validator votes from unfinished proposals.
At the time of the vote the validator submitted its vote as part of
being in the protocol validator. If we have removed this validator,
the proposal will still require at least another validator to vote for
this proposal.

1. The proposal has received quorum - 1 vote before one of the
validators is removed from the list. assuming the quorum remain
the same, the proposal still requires 1 more vote anyway and has
been validated by all the other participants.

2. The proposal has received quorum - 1 vote before the quorum
is reduced by 1. The proposal will still require an extra vote in
order to be detected that the quorum has been reached.

3. The quorum is already reached: the proposal is already processed
4. the proposal has received quorum - k votes. The proposal will

still need to receive at least k extra votes to be processed.

 In short, we rely on the honest majority to continuously guarantee
that the proposals being voted on are necessary. I.e. if a bad actor
who was voting on invalid proposal is being removed, we assume the
honest majority will not vote for invalid proposals anyway.

Ȉ Proposal migration

Fixed in pull request #821.

Ȉ Tokens are not returned to users if an unwrapping request gets voted out

 TODO removed in pull request #886Ǥ����������ǯ��������������������������ǣ

 We do not believe the transaction id can be verified on the smart
contract side. It is not possible for the sidechain to actually verify a
transaction on the mainchain (Cardano here) has happened
successfully. However, the validator will know this. If the transaction
that was proposed in the smart contract becomes invalid and is not
included in the blockchain then the validator will initiate a
migration.

[L5] VOTEFORTRANSACTION CAN FAIL WITHOUT ANY INDICATION

In Multisig.sol the voteForTransaction function checks to see if a call to
confirmTransaction should be issued. There already exists a revert statement that will

https://github.com/dcSpark/milkomeda-validator/pull/821
https://github.com/dcSpark/milkomeda-validator/pull/886
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L187-L189

cause the transaction to revert if a transactionId already exists and the parameters
submitted do not match the parameters stored for the given transaction.

However, if voteForTransaction is called with parameters that do match a
transactionId but the transaction has already been executed, voteForTransaction will
��ǯ�Ǥ

RECOMMENDATION

When checking if a transactionId has been executed, consider inserting a revert
statement that will cause a transaction to be reverted in this situation.

UPDATE

Fixed. Event emissions were adjusted in pull request #874Ǥ����������ǯ���������������������
issue:

A transaction will be executed as soon as the quorum is reached. However, it is
possible that other validators votes are yet to be registered by the smart contract. I.e.
all the validators will check independently from each other if an action can be done
and will all vote as soon as possible to execute a transaction. If we were to throw an
error on votes that are not necessary (but not invalid) we would have up to
validators - quorum errors reported to all the nodes. This will create
unnecessary noise. Once the transaction has been executed all the validators are
notified by an event that the transaction was executed.

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L179-L184
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L179-L184
https://github.com/dcSpark/milkomeda-validator/pull/874

NOTE SEVERITY

[N1] FUNCTIONS CAN BE MARKED EXTERNAL

Due to the low level call nature of transaction execution, the following list of functions can
be marked external which will result in gas savings.

Multisig.sol

addValidator
removeValidator
replaceValidator
upgradeContract
voteForTransaction
removeTransaction
getConfirmationCount
getTransactionCount
getValidators
getConfirmations
getTransactionIds

Rewards.sol

withdrawRewards

SidechainBridge.sol

initialize
submitUnwrappingRequest
submitUnwrappingProposalTransaction
voteOnUnwrappingProposalTransaction
updateProtocolMagic
updateBridgeParameters
getUnwrappingProposalRequest
getUnwrappingProposalTransaction
getUnwrappingProposalTransactionWitness
onERC1155Received
onERC1155BatchReceived

TokenRegistry.sol

addAssetToRegistry
updateAsset
removeAssetFromRegistry
getAssetIdsCount
getAssetIds
findAssetIdByAddress

RECOMMENDATION

Consider changing the visibility of the aforementioned functions from public to
external.

UPDATE

Fixed in pull request #883.

[N2] INCORRECT REQUIRE STATEMENT

In Multisig.sol the function executeTransaction has a require statement that can
never fail. value is an unsigned integer which will always be greater than or equal to 0. If
transaction.value is less than the WRAPPING_FEE, then the transaction will revert
since the solc compiler is version 0.8.x.

RECOMMENDATION

Consider removing the require statement and examine if this behavior is intentional.

UPDATE

Fixed in pull request #819. The original issue is no longer present. The team added a new
require statement that checks value against WRAPPING_FEE.

[N3] CONTRACTS NOT OPTIMIZED BEF ORE DEPLOYMENT

The implementation and proxy contracts are not optimized before deployment.

RECOMMENDATION

To reduce the size of deployed bytecode and to reduce the cost of executing transactions,
consider running the solc optimizer.

UPDATE

Not fixed. Milko����ǯ��������������������������ǣ

Acknowledged. We will investigate this at a later time.

https://github.com/dcSpark/milkomeda-validator/pull/883
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L205-L208
https://github.com/dcSpark/milkomeda-validator/pull/819

[N4] INCONSISTENT USE OF TOKEN RECEIVER CONTRACTS

The SidechainBridge contract inherits from ERC1155Receiver and overrides the
onERC1155Received and onERC1155BatchReceived functions. This is good behavior and
allows the contract to use the safeTransferFrom function on ERC1155 tokens. The
ERC721 tokens currently use transferFrom because the SidechainBridge contract
does not inherit from the ERC721Receiver contract.

RECOMMENDATION

Consider having SidechainBridge inherit from ERC721Receiver and override the
onERC721Received function. Then in SidechainBridge.sol the
safeTransferFrom function can be used to move ERC721 tokens from msg.sender to
the contract address.

UPDATE

Not fixed. Milkomeda added a comment with their reasoning in pull request #854:

// we can safely use transferFrom instead of safeTransferFrom
// because we are always transferring to ourselves

[N5] NOT FOLLOWING CHECKS-EFFECTS-INTERACTIONS PATTERN

submitUnwrappingRequest makes external calls to allowed assets before modifying
state variables. A malicious token contract could hijack control flow with the
transferFrom and safeTransferFrom function calls. The risk of reentrancy exists in
the submitUnwrappingRequest function, however it would not have any security
impact because the malicious asset must first be voted in by a validator majority.
Furthermore, an attacker is limited in what functions can be called because of function
modifiers on other public methods.

RECOMMENDATION

While there is no impact in this particular case, it is best practice to follow the checks-effects-
interactions pattern.

Consider moving external calls in submitUnwrappingRequest below the state changes
on lines 207-212

UPDATE

Fixed in pull request #856.

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L27
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L321-L340
https://github.com/dcSpark/milkomeda-validator/pull/854
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L181-L205
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L207-L212
https://github.com/dcSpark/milkomeda-validator/pull/856

[N6] NOT FOLLOWING NAMING CONVENTIONS

Parameters for initialize that have a corresponding storage variable are prefixed with an
underscore.

_minWmainUnwrap does not have a corresponding storage variable, so there is no need for
the underscore.

RECOMMENDATION

Consider removing the underscore from _minWmainUnwrap for clarity.

UPDATE

Fixed in pull request #891.

[N7] UNSTRUCTURED STORAGE PROXIES

In Proxy.sol the first storage slot is used to store the implementation address. This can be
error-prone because the proxy performs delegate calls on an implementation address
and may conflict with a storage slot on the implementation contract. Storage collision can
occur (but does not in the current code) if the proxy and implementation do not share the
same storage patterns. EIP-1967 was created to help address this issue and it uses a
standardized storage slot location for the implementation storage variable. This will also
allow the implementation contract to declare and use storage variables regardless of the
storage layout in the proxy, with one exception: The implementation contract is responsible
for updating the implementation address and as such will have to use the standardized
storage slot for the implementation variable as the proxy does.

RECOMMENDATION

Consider using the EIP-1967 standardized storage slot for the implementation storage
variable. More info can be found here: unstructured-storage-proxies

UPDATE

Fixed in pull request #853.

[N8] GAS SAVINGS

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/SidechainBridge.sol#L108-L115
https://github.com/dcSpark/milkomeda-validator/pull/891
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/proxy/Proxy.sol#L7-L8
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies#unstructured-storage-proxies
https://github.com/dcSpark/milkomeda-validator/pull/853

Three areas were identified where gas efficiency can be improved.

CACHE ARRAY.LENGTH VALUES

There are several instances where array.length is computed inside for loops or
multiple times in the same function.

RECOMMENDATION

Consider caching array lengths whenever possible, and updating the following:

Multisig.sol:

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L101

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L103

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L124

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L232

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L234

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L245

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L300

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L313

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L335

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L338

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L359

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L360

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L363

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Multisig.sol#L366

Rewards.sol:

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Rewards.sol#L18

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Rewards.sol#L19

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/Rewards.sol#L21

SidechainBridge.sol:

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/SidechainBridge.sol#L120

TokenRegistry.sol:

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/TokenRegistry.sol#L48

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/TokenRegistry.sol#L50

Ȉ https://github.com/dcSpark/milkomeda-
validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src
/TokenRegistry.sol#L76

ONLY CALL CHANGEQUORUM WHEN NECESSARY

In Multisig.sol, the addValidator and removeValidator functions always call
changeQuorum regardless of the function parameters.

If newStargateAddress and newQuorum match the current stargateAddress and
quorum, this call is unnecessary.

RECOMMENDATION

Consider adding logic in addValidator and removeValidator to check if quorum and
stargateAddress will remain unchanged.

SIMPLIFY VALIDREQUIREMENT MODIFIER

The if statement in validRequirement in its current state can be simplified because there
are no cases where validatorCount can be 0 when quorum is non-zero.

RECOMMENDATION

Consider simplifying the if statement.

Note that if the validatorCount were to be checked against a number other than zero
(e.g. validator count < 4, as mentioned in No checks on minimum validator count),
this check cannot be removed.

UPDATE

Not fixedǤ����������ǯ��������������������������ǣ

Acknowledged. We will investigate this at a later time.

[N9] TYPOGRAPHICAL ERRORS

There are code comments that were not updated when variables were renamed.

Ȉ A comment in Rewards.sol was not updated when WITHDRAWAL_EPOCH was
renamed to WITHDRAWAL_PERIOD

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L85
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L92
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L63
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Rewards.sol#L12

Ȉ Comments in Types.sol and State.sol were not updated when WMAIN_RELEASE_FEE
was renamed to WRAPPING_FEE

Ȉ Multisig.sol has a minor typo ��������������ǲ������ǳ

RECOMMENDATION

Consider updating the comments to match the referenced variables and fixing typos:

Ȉ WITHDRAWAL_EPOCH -> WITHDRAWAL_PERIOD

Ȉ WMAIN_RELEASE_FEE -> WRAPPING_FEE

Ȉ wmainReleaseFee -> WRAPPING_FEE

Ȉ filer -> filter

UPDATE

Fixed in pull request #820.

https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Types.sol#L35
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/State.sol#L67
https://github.com/dcSpark/milkomeda-validator/tree/860d5c4cb34e3a5ed6bfcd6d22e67010dd80e02a/m1/contracts/src/Multisig.sol#L304
https://github.com/dcSpark/milkomeda-validator/pull/820

APPENDIX A Ȃ SEVERITY DEFINITIONS

Critical This issue is straightforward to exploit and is
lik���ǯ��
reputation and can lead to financial loss for
client or users.

High This issue is difficult to exploit and is likely to
��������������������������������������ǯ��
reputation and can lead to financial loss for
client or users.

Medium This issue is important to fix and puts a subset
��������ǯ���
moderate financial impact.

Low This issue is not exploitable on a recurring basis
and cannot have a significant impact on
execution.

Informational (Note) This issue does not pose an immediate risk but
is relevant to security best practices.

Undetermined The extent of the risk was not determined
during this audit.

APPENDIX B Ȃ LIST OF FILES IN SCOPE

Milkomeda-validator/m1/contracts/src/proxy/Proxy.sol

Milkomeda-validator/m1/contracts/src/Multisig.sol

Milkomeda-validator/m1/contracts/src/Rewards.sol

Milkomeda-validator/m1/contracts/src/SidechainBridge.sol

Milkomeda-validator/m1/contracts/src/State.sol

Milkomeda-validator/m1/contracts/src/TokenRegistry.sol

Milkomeda-validator/m1/contracts/src/Types.sol

	Vulnerability Statistics
	Severity Breakdown

	Fixes Summary
	Executive Summary
	Findings
	Medium Severity
	[M1] Implementation contract should not be able to receive wADA
	Recommendation
	Update

	[M2] No checks on minimum validator count
	Recommendation
	Update

	[M3] Lack of address sanity checks
	Recommendation
	Update

	Low Severity
	[L1] Implementation set but not initialized
	Recommendation
	Update

	[L2] Lack of event emissions
	Recommendation
	Update

	[L3] Possibly dangerous distribution of rewards
	Recommendation
	Update

	[L4] Unimplemented TODOs
	Recommendation
	Update

	[L5] voteForTransaction can fail without any indication
	Recommendation
	Update

	Note Severity
	[N1] Functions can be marked external
	Recommendation
	Update

	[N2] Incorrect require statement
	Recommendation
	Update

	[N3] Contracts not optimized before deployment
	Recommendation
	Update

	[N4] Inconsistent use of token receiver contracts
	Recommendation
	Update

	[N5] Not following checks-effects-interactions pattern
	Recommendation
	Update

	[N6] Not following naming conventions
	Recommendation
	Update

	[N7] Unstructured storage proxies
	Recommendation
	Update

	[N8] Gas savings
	Cache array.length values
	Recommendation

	Only call changeQuorum when necessary
	Recommendation

	Simplify validRequirement modifier
	Recommendation

	Update

	[N9] Typographical Errors
	Recommendation
	Update

	Appendix A – Severity Definitions
	Appendix B – List of Files in Scope

