
Formal Verification Report of dcSpark
SidechainBridge

Summary

This document describes the specification and verification of the sidechain bridge of the

Milkomeda protocol using the Certora Prover. The work was undertaken from 07/09/2022

to 12/10/2022. The latest commit that was reviewed and run through the Certora Prover

was ce5827a.

The scope of our verification was the SidechainBridge contract.

The Certora Prover verified that the implementation of the sidechain bridge is correct with

respect to the formal rules written by the Certora team. During the verification process,

the Certora Prover discovered bugs in the code listed in the table below. The development

team at dcSpark promptly corrected all issues, and the fixes were verified to satisfy the

specifications up to the limitations of the Certora Prover. The Certora development team is

currently handling these limitations. The next section formally defines the high level

specification of Milkomeda's sidechain bridge.

List of Main Issues Discovered

Severity: Critical

Issue: Protocol hijack by single validator

Rules

Broken:
transacationDoesNotExistsImpliesNotConfirmed

Description:

In the removeTransaction() function, removing a transaction does

not set all its confirmations to false. This leaves the transactionId
that was removed as pre-confirmed, so a following transaction to that

transactionId will be immediately executed (as it already has

enough votes). An attacker could leverage this to call

upgradeContract() function and take control over the protocol

dcSpark

Response:
The vulnerable removeTransaction function was removed in aa1a4.

https://github.com/dcSpark/milkomeda-validator/commit/ce5827a8256f49709be1861bdd5605f62df6cf7b
https://github.com/dcSpark/milkomeda-validator/pull/1323/commits/aa1a4801e4b4ef3f11958019fb71564fbd6331fe

Severity: Critical

Issue: Asset value upgrade

Rules

Broken:

Description:

Calling upgradeAsset() on an asset from a low-value token to a high-

value token would greatly increase the value a user already owns on

that assetId . This improper increase would cause insolvency.

dcSpark

Response:
The vulnerable updateAsset function was removed in 62e64.

Severity: Critical

Issue: Double execution of same request

Rules

Broken:

Description:

A malicious validator could migrate a proposal that it wants to

duplicate and not sign it on-chain. The malicious validator would call

the migrate() when (quorum - 1) signatures are obtained. This

would enable them to sign the proposal off-chain and send it to the

other side, while the migrated proposal would also likely be signed and

sent.

Unless the migration process on this side is tracked very tightly by all

good validators and the other side's bridge, it would be impossible to

distinguish between such a malicious duplication and an actual case

of two proposals with the same request.

dcSpark

Response:
The vulnerable migrateProposal function was removed in b3179.

Severity: High

Issue: Insolvency

Rules

Broken:
checkRewards

https://github.com/dcSpark/milkomeda-validator/pull/1486/commits/62e64bfd9b0a60001358352d6f7a001d6bb36b12
https://github.com/dcSpark/milkomeda-validator/pull/1400/commits/b31790eb67166ebba9aeb470dfb8ed57caa688a3

Issue: Insolvency

Description:

In the withdrawRewards() function there is a calculation of the

"share" of the rewards for each validator (which is rewardsPot /
validators.length). Subsequently, there is a for loop on the
validators array that sends money to each validator. If the validator's

fallback (or receive) function contains a call to the

voteForTransaction or executeTransaction functions that would

result in the addition of a validator (by executing the transaction), then

the for loop of withrawRewards() would repeat over an extra validator

and send one share too many. This extra loop iteration would cause

insolvency.

dcSpark

Response:

The issue was fixed in 07042 by disallowing reentrant calls to all key

contract functions.

Severity: High

Issue: DOS by a validator frontruns transactions

Rules

Broken:
nonDOS

Description:

A malicious validator can voteForTransaction with the id of the
future transaction he wants to prevent and then this transaction will

not be able to be submitted. This is a DOS to any transaction that the

malicious validator wants to prevent and he can even prevent his

removal because he can prevent this transaction.

dcSpark

Response:

The bridge contract is only deployed to networks where consensus is

controlled by the same set of validators that controls the contract. For

example, the Milkomeda C1 sidechain is run by the bridge contract

validators operating under the IBFT consensus. Under honest majority

assumption a corrupt validator will not be able to block their removal

from the contract for instance because they can be ejected as a

validator on the consensus level (bypassing any communication via

EVM transactions).

Severity: High

Issue: Vote on canceled Unwrapping Proposal

Rules

Broken:

https://github.com/dcSpark/milkomeda-validator/commit/070427b916d50cba8149d68cf1e9f3c796adf66e#
https://besu.hyperledger.org/en/22.1.3/HowTo/Configure/Consensus-Protocols/Add-Validators/

Issue: Vote on canceled Unwrapping Proposal

Description:

Validators can vote on a canceled Unwrapping Proposal and may lead

to its execution if the quorum is reached. This can happen because

there is no way to distinguish between a canceled UPT and a

confirmed UPT.

dcSpark

Response:
The vulnerable migrateProposal function was removed in b3179.

Severity: High

Issue: DOS by Reset all voting on unwrappingProposals

Rules

Broken:

Description:

Validators can reset all votes on an Unwrapping Proposal and lead to a

migrating proposals DOS by calling

migrateUnwrappingProposal(uint256) .

dcSpark

Response:
The vulnerable migrateProposal function was removed in b3179.

Severity: Medium

Issue: Vote with empty witness

Rules

Broken:

Description:

A Validator can vote multiple times on the same

UnwrappingProposalTransaction by calling to

voteOnUnwrappingProposalTransaction(uint256, bytes) with an

empty bytes array as a witness which can lead to confirmation of an

unwrapping UnwrappingProposalTransaction by a single validator.

dcSpark

Response:
Votes with empty witness disallowed in 00389.

Severity: Low

Issue: unwrapping proposal getting stuck after quorum change

Rules

Broken:

https://github.com/dcSpark/milkomeda-validator/pull/1400/commits/b31790eb67166ebba9aeb470dfb8ed57caa688a3
https://github.com/dcSpark/milkomeda-validator/pull/1400/commits/b31790eb67166ebba9aeb470dfb8ed57caa688a3
https://github.com/dcSpark/milkomeda-validator/pull/1402/commits/00389785fbcc8d363b2a5396628125bcbd4e084e

Issue: unwrapping proposal getting stuck after quorum change

Description:

If an unwrapping proposal has vote count 'x' that is less than the

quorum and the quorum is changed to be less than 'x', the unwrapping

proposal will never be executed and will remain stucked because it is

flaged as not closed but it's voting had reached the quorum

dcSpark

Response:

Fixed by adding confirmUnwrappingProposalTransaction . to confirm
unwrapping proposal transactions that it's votes had reached the

quorum

Severity: Low

Issue: Replace to zero validator

Rules

Broken:
zeroNotValidator

Description:
The notnull modifier was missing in the replaceValidator function

meaning a majority could add 0x0 as a validator by mistake.

dcSpark

Response:
Fixed in 35a12.

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that

the contract satisfies the specification in all scenarios. Importantly, the guarantees of the

Certora Prover are scoped to the provided specification, and the Certora Prover does not

check any cases not covered by the specification.

We hope that this information is useful, but provide no warranty of any kind, explicit or

implied. The contents of this report should not be construed as a complete guarantee that

the contract is secure in all dimensions. In no event shall Certora or any of its employees

be liable for any claim, damages or other liability, whether in an action of contract, tort or

otherwise, arising from, out of or in connection with the results reported here.

Summary of Formal Verification

Overview of Sidechain bridge contract

The following description is taken from the milkomeda-validator repository:

https://github.com/dcSpark/milkomeda-validator/pull/1329/commits/35a128b87537c30eee1259a40d814fda0af89bcc
https://github.com/dcSpark/milkomeda-validator/blob/main/m1/contracts/README.md

The sidechain bridge contract is a part of the Milkomeda protocol. The Milkomeda

protocol provides cross-chain interoperability between two blockchains: a main chain

(currently only a Cardano chain can be configured) and a special EVM chain called the

sidechain.

The interoperability is provided by a set of validators. The validators are actors which

function akin to a decentralized organization. The validators collectively have the power to

do actions on both the mainchain and the sidechain which implement the interoperability.

The validators have more power over the sidechain: they run the consensus protocol of

the sidechain (the sidechain is a permissioned Hyperledger Besu network). In addition

they are recognized as the owners of the bridge smart contract. In a similar manner they

are recognized as owners of a smart contract / multisig address on the mainchain.

Currently the only allowed form of chain interoperability is asset transfer. The asset

transfer is implemented by the end user sending an asset to a contract on one of the

chains. The asset becomes locked, the validators notice this and release a corresponding

asset on the other chain.

List of contracts

There are multiple source files, but the bridge really only consists of two deployed

contracts: the SidechainBridge and the Proxy. Moreover, these two contracts function as a

proxy-implementation pair, therefore they are often talked about as a single contract: the

sidechain bridge contract.

The split into multiple source files via inheritance is only an attempt to organize source

code in Solidity. The files are as follows:

Types.sol: holds type definitions for the bridge contract.

State.sol: holds state variable definitions for the bridge contract. Keeping all state in

single place is important for the safety of the proxy pattern.

Multisig.sol: holds functions to enable the validator set to work as a decentralized

organization: it defines what it means that a certain action can be only done by

validator majority; it enables removing and adding new validators, changing quorum,

and signing-off and executing any sidechain transaction proposals (e.g. those

releasing an asset held by the bridge, thus completing a cross-chain asset transfer).

TokenRegistry.sol: different blockchains have wildly different definitions of assets.

Milkomeda protocol will match and enable transfers of assets based on validators'

decisions. Once validators vote a mainchain-sidechain asset pair identification into

the bridge (which happens via functions in this source file), that asset can be locked

and unlocked on the sidechain bridge contract.

Proxy.sol: the main bridge contract which holds all the bridge state, but delegates all

the calls to the current logic contract.

SidechainBridge.sol: the main bridge contract which holds all the logic (functions)

that can be applied to the bridge state. Beyond the functionality inherited from the

source files above, this file defines support for unwrapping requests, i.e. moving

assets from sidechain to mainchain. An end user can supply their asset to the

contract and make a transfer request -- if the asset is locked successfully, validator

will provide an encoded mainchain transaction (unlocking an appropriate mainchain

asset) to this (i.e. sidechain) contract and keep adding signatures until it's usable on

the mainchain.

Notations

✔ indicates the rule is formally verified on the latest reviewed commit. We write ✔*
when the rule was verified on a simplified version of the code (or under some

assumptions).

 indicates the rule was violated under one of

the tested versions of the code.

✍ indicates the rule is not yet formally specified.

🔁 indicates the rule is postponed (<due to other issues, low priority>) .

We use Hoare triples of the form {p} C {q}, which means that if the execution of program C

starts in any state satisfying p, it will end in a state satisfying q. In Solidity, p is similar to

require, and q is similar to assert.

The syntax {p} (C1 ～ C2) {q} is a generalization of Hoare rules, called relational

properties. {p} is a requirement on the states before C1 and C2, and {q} describes the

states after their executions. Notice that C1 and C2 result in different states. As a special

case, C1～op C2, where op is a getter, indicating that C1 and C2 result in states with the

same value for op.

Formal Properties for Sidechain bridge contract

The following properties were written and verified by Certora.

Functions - MultisigHarness.sol

IsExecuted(bytes32 id) : bool

Getter of bool in transaction struct.

getLength() : uint256

https://i.imgur.com/rDhiM7e.png

Getter of length of validators.

getQuorum() : uint256

Getter of quorum.

getIsValidator(address) : bool

Getter of the mapping of isValidator.

getVote(bytes32, address) : bool

Getter if a transaction has been voted by the address given.

getValidator(uint256) : address

Getter of validator at index given.

voteForTransaction_harness(bytes32, address, uint256, bool)

Same as voteForTransaction but in the harness

executeTransaction_harness(bytes32)

This function executes the transaction but also can call all the inner functions (add,

remove, replace...) that are not modeled by the tool (and now are being modeled).

Functions - SidechainBridgeHarness.sol

setAsset(bytes32, address) : bool

Sets new asset with a given assets Id in the tokenRegistry.

setReqMinValue(bytes32, uint256) : bool

Sets the minimumValue for the given asset in the tokenRegistry.

setTokenType(bytes32) : bool

Sets the given asset as ERC20 in the tokenRegistry.

isValidatorExist(address) : bool

Returns true if the given validator exists in the validators array.

isUnwrappingProposalExists(uint256) : bool

Returns true if there is an unwrappingProposal with the given ID.

isUnwrappingProposalTransactionExists(uint256) : bool

Returns true if there is an encoded transaction for the given uwrappingProposal ID.

isUnwrappingProposalWitnessExist(uint256, address) : bool

Retuns true if the given witness for the given unwrappingProposal exists.

isProposalClosed(uint256) : bool

Returns true if the given unwrappingProposal is closed.

getValidatorsCount() : uint256

Returns the number of validators that exist in the bridge.

Functions - RewardsHarness.sol

getBalance() : uint256

Returns the balance of the Rewards contract.

getRewardsPot() : uint256

Returns the rewardsPot balance.

withdrawRewards_harness() : void

same as withdrawRewards but also can call executeTransaction so the reentrancy will

be modeled.

Properties

1. Integrity Of Vote On Unwrapping Proposal Transaction✔ Following a call for

voteOnUnwrappingProposalTransaction, if quorum is reached, the proposal should be

closed, the reward pot should increase, and the same validator can't vote on unwrapping

proposal transaction with a witness that already exists.

{
 witnessCountBefore :=
getUnwrappingProposalTransactionWitnessCount(proposalId),
 isWitnessExists := isUnwrappingProposalWitnessExist(proposalId,
e.msg.sender),
 rewardsPotBefore := rewardsPot,
 isProposalClosedBefore := isProposalClosed(proposalId)
}
 voteOnUnwrappingProposalTransaction(proposalId, witness);
{
 quorum = witnessCountAfter ∧ ¬isProposalClosedBefore ⇒
(isProposalClosed(proposalId) ∧ rewardsPotBefore < rewardsPotAfter),
 isWitnessExists ⇒ witnessCountBefore = witnessCountAfter,
 ¬isWitnessExists ⇒ witnessCountAfter = witnessCountBefore + 1
}

2. Break the Integrity Of Vote On Unwrapping Proposal Transaction✔ Rule to verify

that no function can break the integrityOfVoteOnUnwrappingProposalTransaction.

{
 witnessCountBefore :=
getUnwrappingProposalTransactionWitnessCount(proposalId),
 isWitnessExists := isUnwrappingProposalWitnessExist(proposalId,
e.msg.sender),
 rewardsPotBefore := rewardsPot(),
 isProposalClosedBefore := isProposalClosed(proposalId)
}
 <invoke any method f>,
 voteOnUnwrappingProposalTransaction(proposalId, witness)
{
 isProposalClosedBefore ⇒ isProposalClosed(proposalId),
 witnessCountAfter = quorum ∧ ¬isProposalClosedBefore ⇒
(rewardsPotBefore < rewardsPotAfter v f = withdrawRewards()) ∧
isProposalClosed(proposalId),
 witnessCountAfter < quorum ∧ ¬isProposalClosedBefore ⇒
¬isProposalClosed(proposalId),
 isWitnessExists ⇒ witnessCountBefore = witnessCountAfter,

 ¬isWitnessExists ⇒ witnessCountAfter = witnessCountBefore + 1
}

3. Can't Vote More Than Once✔

Validators cannot vote on the same proposal more than once.

{
 witnessCountBefore :=
getUnwrappingProposalTransactionWitnessCount(proposalId),
}
 voteOnUnwrappingProposalTransaction(proposalId, witness),
 voteOnUnwrappingProposalTransaction(proposalId, witness)
{
 witnessCountAfter <= witnessCountBefore + 1
}

4. Vote On Closed Unwrapping Proposal Transaction✔

Voting on a closed unwrapping proposal transaction must have no effect except adding a

witness.

{
 isProposalClosed(proposalId) := True,
 witnessCountBefore :=
getUnwrappingProposalTransactionWitnessCount(proposalId)
}
 voteOnUnwrappingProposalTransaction(proposalId, witness)
{
 witnessCountBefore = witnessCountAfter + 1,
 rewardsBefore = rewardsAfter,
 isProposalClosed(proposalId) = True
}

5. Integrity Of MigrateUnwrappingProposal✔

After call to migrateUnwrappingProposal, the old unwrapping proposal must be closed

and a new unwrapping proposal with the same request must be created.

{

}
 migrateUnwrappingProposal(oldProposalId)
{
 ¬isUnwrappingProposalExists(oldProposalId) ∧
 unwrappingProposalTransactionExists(oldProposalId)
}

✔

6. Who Can Change Quorum✔

Rule to verify that only the bridge with addValidator, removeValidator, and changeQuorum

can change the quorum.

7. Who Can Change Rewards Pot✔

Rule to verify that confirmUnwrappingProposalTransaction, executeTransaction or only a

validator with voteOnUnwrappingProposalTransaction, voteForTransaction,

withdrawRewards can change the rewards pot.

8. Integrity Of Withdraw Rewards✔ Rule to verify that the rewards are distributed.

{
 balanceBefore := getBalance(),
 amountToDistribute := getRewardsPot() - (getRewardsPot() %
validatorsCount)
}
 withdrawRewards_harness(args)
{
 amountToDistribute ≠ 0 ⇒ getBalance() < balanceBefore
}

9. Transaction Does Not Exists Implies That Its Not Confirmed✔

This invariant checks that a transaction that does not exist has no votes.

¬transactionExists(id)) ⇒ ¬getVote(id, a)

10. Validator Is Valid✔

Invariant to verify that an address that is in the validators array is marked as a validator.

11. Validator Is Not Zero✔

Invariant to verify that none of the validators is address zero.

12. Validators Uniqueness✔

Invariant to verify that the validators array is unique (without duplicated validators).

13. validInValidators✔

Invariant to verify that each of the validators is valid.

