

LIQUID STAKING SECURITY ASSESSMENT
June 14, 2023

Prepared For:
 Sebastien Guillemot, Milkomeda
Prepared By:
 Arbitrary Execution

Changelog:

 December 27, 2022 Initial report delivered

 February 28, 2023 Final report delivered

 June 14, 2023 Follow-on addendum delivered

2

TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

EXECUTIVE SUMMARY ... 4

FIX REVIEW UPDATE ... 4

FIX REVIEW PROCESS ... 4

FOLLOW-ON REVIEW UPDATE .. 4

VULNERABILITY STATISTICS .. 5

FIXES SUMMARY .. 5

AUDIT OBJECTIVES ... 6

OBSERVATIONS .. 6

SYSTEM OVERVIEW .. 6

TOKENS... 6
milkAda .. 6
stMilkAda... 6

USER CATEGORIES .. 7
Users .. 7
Privileged Roles.. 7

SYSTEM COMPONENTS .. 7
Access Control Model and Validator Voting .. 7
StakedMilkAda .. 8
StakingSmartContract ... 8
Pillage.. 8

FINDINGS ... 9

CRITICAL SEVERITY .. 9
[C01] Contract management functions lack access control .. 9

HIGH SEVERITY ... 10
[H01] Share arithmetic unfairly favors early depositors ... 10
[H02] Incorrect rounding and defaulting when staking and unstaking .. 11

MEDIUM SEVERITY .. 12
[M01] Transaction voting with mismatched transaction .. 12

LOW SEVERITY.. 13
[L01] Inconsistent rewards calculations .. 13
[L02] Transaction IDs are insecure .. 14

NOTE SEVERITY .. 15
[N01] Implementation versus specification mismatch .. 15
[N02] Non-compliance with ERC20 standard .. 16
[N03] Incorrect address raised in error ... 17
[N04] Incorrectly indexed event parameters ... 17
[N05] Use of floating compiler version pragma .. 18
[N06] Unspecified compiler version in Foundry configuration .. 18
[N07] Non-standard naming scheme for public functions .. 19
[N08] Hardhat project and unit tests are non-functional ... 20
[N09] Lack of NatSpec documentation .. 21
[N10] Use of long numeric literals ... 22
[N11] Inconsistent use of named return values .. 23

3

[N12] Typographical errors ... 24
[N13] Unused error and enum values ... 25
[N14] Lack of initialization address checks.. 26

APPENDIX .. 27

APPENDIX A: SEVERITY DEFINITIONS .. 27
APPENDIX B: FILES IN SCOPE ... 28
APPENDIX C: FOLLOW-ON REVIEW... 29

4

EXECUTIVE SUMMARY

This report contains the results of Arbitrary Execution’s security assessment of the Milkomeda Liquid
Staking smart contracts. Milkomeda is a protocol that brings EVM capabilities to non-EVM blockchains.
The protocol allows users to bridge assets from Cardano and Algorand to an EVM-compatible sidechain.
The Liquid Staking smart contracts will enable users to stake their wrapped assets on the Milkomeda
sidechain in order to accrue layer 1 (L1) rewards. Two Arbitrary Execution (AE) security researchers
conducted this review over a 1.5-week period, from December 12, 2022 to December 21, 2022. The
audited commit was d7496b1c4bce8dba49f3309ce0aed846d2b10fe9 in the main branch of the
dcSpark/liquid-staking repository. The complete list of files in scope is located in Appendix B. This
repository was private at the time of the engagement, so hyperlinks may not work for readers without
access.

The team performed a detailed, manual review of the codebase with a focus on Milkomeda’s
StakedMilkAda, StakingSmartContract, and Pillage contracts. In addition to manual review,
the team used Slither with AE’s proprietary Slither detectors for automated static analysis.

The assessment resulted in findings ranging in severity from critical to note (informational). A critical
finding in the access control for contract upgrades allows an arbitrary user to perform upgrades. Two
high severity findings impact the staking and unstaking calculations. Medium and low severity findings
impact the way the protocol generates transaction IDs and handles transactions. The note severity
findings contain observations regarding code hygiene, documentation, and other best practices.

FIX REVIEW UPDATE

The Milkomeda team has fixed all major issues identified in the engagement. Three note findings were
marked acknowledged, partially fixed, or not fixed. The full breakdown of fixes can be found in the Fixes
Summary section.

FIX REVIEW PROCESS

After receiving fixes for the findings shared with the Milkomeda team, the AE team performed a review
of each fix. Each pull request was scrutinized to ensure that the core issue was addressed, and that no
regressions were introduced with the fix. A summary of each fix review can be found in the Update
section for a finding. For findings that the Milkomeda team chose not to address, the team’s rationale is
included in the update.

Two fix review PRs contained additional code changes unrelated to the original finding. These additional
changes were reviewed by AE in a follow-on engagement after the fix review.

FOLLOW-ON REVIEW UPDATE

During the months of April and May 2023, Milkomeda engaged AE to review additional changes to the
Liquid Staking codebase. The AE team reviewed the changes, relayed feedback to the Milkomeda team,
and reviewed the PR implementing the feedback. During the follow-on review, the Milkomeda team
identified a bug that was verified by the AE team. The bugfix was also reviewed during this engagement.

No additional findings were identified that impact the security of the Liquid Staking protocol. A full
summary of the follow-on review is located in Appendix C.

https://github.com/dcSpark/liquid-staking/
https://github.com/crytic/slither

5

VULNERABILITY STATISTICS

Severity Count

Critical 1

High 2

Medium 1

Low 2

Note 14

FIXES SUMMARY

Finding Severity Status

C01 Critical Fixed in pull request #13

H01 High Fixed in pull request #14

H02 High Fixed in pull request #35

M01 Medium Fixed in pull request #16

L01 Low Fixed in pull request #19

L02 Low Fixed in pull request #24

N01 Note Fixed in pull request #17

N02 Note Acknowledged

N03 Note Fixed in pull request #18

N04 Note Fixed in pull request #20

N05 Note Fixed in pull request #22

N06 Note Fixed in pull request #21

N07 Note Fixed in pull request #23

N08 Note Fixed in pull request #32

N09 Note Fixed in pull request #33

N10 Note Fixed in pull request #25

N11 Note Fixed in pull request #26

N12 Note Fixed in pull request #27

N13 Note Fixed in pull request #28

N14 Note Not fixed

https://github.com/dcSpark/liquid-staking/pull/13
https://github.com/dcSpark/liquid-staking/pull/14
https://github.com/dcSpark/liquid-staking/pull/35
https://github.com/dcSpark/liquid-staking/pull/16
https://github.com/dcSpark/liquid-staking/pull/19
https://github.com/dcSpark/liquid-staking/pull/24
https://github.com/dcSpark/liquid-staking/pull/17
https://github.com/dcSpark/liquid-staking/pull/18
https://github.com/dcSpark/liquid-staking/pull/20
https://github.com/dcSpark/liquid-staking/pull/22
https://github.com/dcSpark/liquid-staking/pull/21
https://github.com/dcSpark/liquid-staking/pull/23
https://github.com/dcSpark/liquid-staking/pull/32
https://github.com/dcSpark/liquid-staking/pull/33
https://github.com/dcSpark/liquid-staking/pull/25
https://github.com/dcSpark/liquid-staking/pull/26
https://github.com/dcSpark/liquid-staking/pull/27
https://github.com/dcSpark/liquid-staking/pull/28

6

AUDIT OBJECTIVES

AE focuses on common high-level goals for all security audit engagements. During this engagement, the
AE team:

• Identified smart contract vulnerabilities

• Evaluated adherence to Solidity best practices

The Milkomeda team provided additional specific goals to guide the engagement. The AE team also:

• Verified access controls for UUPSUpgradeable contract upgrades

• Verified the access controls defined in the Bridge contract

AE examined access control through a combination of manual review and writing Foundry unit tests.

OBSERVATIONS

There is little documentation in the liquid-staking repository, and existing documentation lives in a
separate repository from the code. Updating the liquid-staking repository’s README.md with
additional information would aid developers and auditors in future engagements.

The StakedMilkAda contract implements the ERC20 interface, but has modified the behavior of
several functions including transfer, transferFrom, and balanceOf. The
stakingSmartContract and StakedMilkAda contracts depend on one another for balance
calculations. Implementing an interface is different than being complaint with the specification, and the
documentation should make this distinction clear.

The Liquid Staking security model draws inspiration from the Milkomeda Bridge, where validators hold
the ability to propose and execute privileged functions through the Bridge multisig contract. The Liquid
Staking contracts rely on the same set of validators as the Milkomeda Bridge, but implement their own
transaction execution mechanism. The Milkomeda Bridge multisig can add and remove validators, but
otherwise cannot interact with the Liquid Staking contracts.

SYSTEM OVERVIEW

TOKENS

Native tokens on the Milkomeda sidechain are wrapped versions of their respective L1 assets. Their
names are prefixed with milk.

MILKADA

milkAda is wrapped ADA. It can be used as a native token on the Milkomeda sidechain.

STMILKADA

stMilkAda is a token representing “Staked milkAda”. Users call the stake method on the
StakingSmartContract, lock up milkAda, and receive stMilkAda in return. This token represents
a user’s share of the entire staked milkAda pool.

https://docs.openzeppelin.com/contracts/4.x/api/proxy#UUPSUpgradeable
https://book.getfoundry.sh/forge/tests
https://github.com/dcSpark/milkomeda-documentation/tree/liquid-staking/docs/cardano/liquid-staking
https://github.com/dcSpark/liquid-staking/blob/main/README.md

7

USER CATEGORIES

USERS

Users on the Milkomeda sidechain can transact, interact with contracts, and stake tokens. Users do not
hold any special roles in the context of the Liquid Staking smart contracts. Liquid Staking users can either
be EOAs or smart contracts.

PRIVILEGED ROLES

VALIDATORS

Validators run the consensus protocol of the Milkomeda sidechain. In the context of the Liquid Staking
contracts they can call functions that contain calls to _assertValidator(msg.sender). These
protected functions will execute after reaching quorum validator votes. Actions that are restricted to
validators include:

• Changing the address of the stakedMilkAda and Pillage contracts in the
StakingSmartContract

• Pausing and unpausing the StakingSmartContract and StakedMilkAda contracts

• Performing administrator functions on the Pillage contract

SYSTEM COMPONENTS

The liquid Staking system has three major components:

• The StakingSmartContract, which is responsible for receiving deposits and relaying
information about the staking pool to the StakedMilkAda contract.

• The StakedMilkAda contract, which issues an ERC20 compatible token to represent staked
milkAda.

• The Pillage contract, which is responsible for taking (“pillaging”) rewards from smart
contracts that are unable to withdraw their rewards.

The StakingSmartContract and StakedMilkAda contracts use a double accounting system. The
StakingSmartContract tracks the total deposited milkAda, and the StakedMilkAda contract
tracks the percentage ownership of each user in relation to the total amount of milkAda deposited.

The StakingSmartContract, StakedMilkAda, and Pillage contracts are all UUPSUpgradeable,
so upgrade logic is handled in the implementation contracts, not the proxy.

ACCESS CONTROL MODEL AND VALIDATOR VOTING

The Liquid Staking contracts draw from the access control model of the Milkomeda Bridge contracts.
Administrator transactions are proposed by validators through calls to _addTransaction and execute
after quorum validators confirm the transaction via _confirmTransaction.

https://docs.openzeppelin.com/contracts/4.x/api/proxy#UUPSUpgradeable

8

STAKEDMILKADA

The StakedMilkAda contract is an ERC20 contract with additional logic for token transfers. This token
tracks the percentage ownership of each user in relation to the staking pool. It coordinates with the
StakingSmartContract to calculate a user’s share of the pool when transferring stMilkAda tokens.

STAKINGSMARTCONTRACT

The StakingSmartContract tracks the total amount of milkAda deposited to the staking pool. It
handles deposits and accounting when users transfer their stMilkAda tokens. The
StakingSmartContract is the only address that can call mint and burn on the StakedMilkAda
contract.

PILLAGE

The Pillage contract enables the Milkomeda DAO to claim staking rewards from inactive accounts as
protocol revenue. It has permissions to call the removeRewardsOnBehalf function on the
StakingSmartContract. This function allows the Pillage contract to withdraw rewards from smart
contract accounts that do not implement an ableToWithdrawRewards function.

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

9

FINDINGS

CRITICAL SEVERITY

[C01] CONTRACT MANAGEMENT FUNCTIONS LACK ACCESS CONTROL

Contracts in the project use the authorizeUpgrade modifier for access control. The onlyProxy
modifier is used with the intention of limiting administrative functions to the contract itself, after
reaching quorum votes from validators:

function _authorizeUpgrade(
 address newImplementation
) internal override(Bridge, UUPSUpgradeable) onlyProxy {}

However, the onlyProxy modifier does not enforce this. According to OpenZeppelin’s documentation:

Check that the execution is being performed through a delegatecall call and that the
execution context is a proxy contract with an implementation (as defined in ERC1967)
pointing to self

As a result, any user is able to call the following functions:

• From Bridge.sol:

– _executeBridgeUpdate (public)

• From StakingSmartContract.sol:

– _executePillagerUpdate (public)

– _executeStakedMilkAdaUpdate (public)

– _executePuase (public)

– _executeUnPuase (public)

• From StakedMilkAda.sol:

– _executeStakingSCUpdate (public)

– _executePuase (public)

– _executeUnPuase (public)

• From Pillage.sol:

– _executeUpgradeTo (public)

– _executeStakingSCUpdate (public)

RECOMMENDATION

Consider making contract management functions callable only from the contract itself via the
_confirmTransaction function.

UPDATE

Fixed in pull request #13 (commit hash 0288bb342568eb03a12192090f4d53b3fb5c9968), as
recommended.

https://docs.openzeppelin.com/contracts/4.x/api/proxy#UUPSUpgradeable-onlyProxy--
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/pillage/Pillage.sol
https://github.com/dcSpark/liquid-staking/pull/13

10

HIGH SEVERITY

[H01] SHARE ARITHMETIC UNFAIRLY FAVORS EARLY DEPOSITORS

The share conversion calculation in the function getSharesByPooledMilkAda allows the first
depositor to manipulate the amount of shares received by following depositors. If the first depositor
stakes 1 wei and accredits some amount of rewards in the accreditToPool function, the next
depositor’s stake will include those rewards in the divisor of its share calculation.

Consider a scenario where Milkomeda wants to deposit 11 Ether as an initial deposit, but before they
are able to do so, an attacker deposits 1 wei and accredits 10 Ether. Milkomeda will receive 1 share for
the 11 Ether deposit, while the attacker receives 1 share after only contributing 1 wei to the pool. If a 10
Ether reward is dispersed, the attacker can withdraw over 10 Ether.

A common way to mitigate risk from “donation attacks” is by making a sufficiently large first deposit
from a trusted party.

RECOMMENDATION

Consider staking some balance of tokens during the initialization of the contract in order to avoid
donation attacks.

UPDATE

Fixed in pull request #14 (commit hash 3dc9de8e609f9af121095d4ab269a7976e405e7d), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/main/src/stakingSC/StakingSmartContract.sol#L217
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L131
https://github.com/dcSpark/liquid-staking/pull/14

11

[H02] INCORRECT ROUNDING AND DEFAULTING WHEN STAKING AND UNSTAKING

The rounding performed during staking and unstaking operations is inconsistent with recommendations
from standards such as EIP-4626:

If (1) it’s calculating how many shares to issue to a user for a certain amount of the underlying
tokens they provide or (2) it’s determining the amount of the underlying tokens to transfer to
them for returning a certain amount of shares, it should round down.

If (1) it’s calculating the amount of shares a user has to supply to receive a given amount of
the underlying tokens or (2) it’s calculating the amount of underlying tokens a user has to
provide to receive a certain amount of shares, it should round up.

When staking, the stake function defaults the amount of shares to mint to msg.value when
getSharesByPooledMilkAda returns zero. However, when computing the number of shares to burn
in _unstake, the value returned by getSharesByPooledMilkAda is always used.

The calculation in the getSharesByPooledMilkAda function also strictly rounds down. Because of
this, it is possible for it to return zero, specifically when provided with a small input amount while the
total rewards are high compared to the total deposits.

When taken in combination, these issues allow a malicious user to drain the rewards pool. The user can,
if necessary, make use of a flash loan to first inflate the amount of rewards. For a sufficiently high value
of totalRewards, getSharesByPooledMilkAda will return zero, and the malicious user will receive
msg.value shares upon calling stake.

Then, by repeatedly staking and unstaking, the user will be able to reclaim both any borrowed funds and
funds already in the rewards pool.

RECOMMENDATION

Consider removing the edge case in the stake function that mints msg.value rewards and following
the rounding guidelines in ERC4626.

UPDATE

Fixed in pull request #35 (commit hash cd000da6d45daae0f43bcfdedac696bde29c9735), as
recommended.

https://eips.ethereum.org/EIPS/eip-4626
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L182
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L217
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L325
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L217
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/dcSpark/liquid-staking/pull/35

12

MEDIUM SEVERITY

[M01] TRANSACTION VOTING WITH MISMATCHED TRANSACTION

Transactions are added to the transactions mapping via the _addTransaction function on line 71.
This function either adds a new transaction or returns an existing one, depending on the
_transactionId provided. When the provided _transactionId exists, the _data and
_destination fields passed in are checked against the existing values associated with that
_transactionId.

However, this check will only revert if both the _destination and _data fields do not match the
existing values. This means if one field is correct and the other is incorrect, the function will not revert.

Moreover, it is possible for a malicious validator to front-run another validator’s transaction with a
transaction that overlaps the _transactionId and one of the two parameters. Since one of the
parameters will match, the front-run validator’s transaction will not revert and will instead count as a
vote towards the malicious transaction.

RECOMMENDATION

Consider changing the check to revert on a mismatch of transaction destination or data.

UPDATE

Fixed in pull request #16 (commit hash 6571e6a03c07f3ad8e6dcdb822c0395c3d1df13f), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L71
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L87-L90
https://github.com/dcSpark/liquid-staking/pull/16

13

LOW SEVERITY

[L01] INCONSISTENT REWARDS CALCULATIONS

In StakingSmartContract.sol, the function _withdrawRewards implements the arithmetic for
computing rewards based on an amount of shares. The function removeRewardsOnBehalf contains
similar arithmetic for the same purpose.

The rewards calculation in _withdrawRewards contains extra logic to handle the cases where the
user’s deposit is zero or larger than the calculated percentageMilkAda, but the version in
removeRewardsOnBehalf lacks these checks. This can create situations where the
removeRewardsOnBehalf function will revert with an arithmetic underflow, while the
_withdrawRewards function will not.

The underflow occurs when userDeposits is greater than the left-hand-side of the subtraction on line
158. Under this condition, the Pillage contract will be blocked from reaping rewards on behalf of the
account.

RECOMMENDATION

Consider factoring the rewards calculation into a separate helper function, or at a minimum ensuring
the calculation is consistent across the _withdrawRewards and removeRewardsOnBehalf functions.

UPDATE

Fixed in pull request #19 (commit hash e222237169140e9cc8846c70e8d76560f59f49b1), as
recommended.

Code changes unrelated to StakingSmartContract.sol were introduced in pull request #19. These
changes were reviewed during the follow-on engagement.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L372
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L143
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L158
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L158
https://github.com/dcSpark/liquid-staking/pull/19
https://github.com/dcSpark/liquid-staking/pull/19

14

[L02] TRANSACTION IDS ARE INSECURE

In the Base contract, the transactions mapping holds Transaction objects. When transactions are
submitted, they are first populated via the _addTransaction function and confirmed once via the
internal _confirmTransaction function. The _transactionId is used when referencing
transactions, and is passed around to both of these functions.

Because a _transactionId is supposed to be a unique identifier, the _addTransaction function
checks and reverts when a submitted transaction has an existing _transactionId but different _data
and _destination values. However, the _transactionId parameter is normally provided by a
validator rather than uniquely generated based on the transaction.

Since it is possible to submit a Transaction with an arbitrary _transactionId, a malicious validator
can front-run any other validator with a Transaction that shares the _transactionId but contains
different data, causing the behaving validator to revert.

Similarly, the generateId function can be front-run, as it is possible to calculate the _transactionId
that will be associated with the new contract’s address.

These front-run attacks makes it possible for a single bad acting validator to prevent other validators
from submitting transactions.

RECOMMENDATION

Consider securely generating the _transactionId of transactions to remove the potential for denial
of service attacks. This can safely be done by hashing a combination of a transaction with something
time-based such as block.timestamp or block.hash.

UPDATE

Fixed in pull request #24 (commit hash 3f448741f4d250f11ac91b44a0227161cc0adbd6), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Base.sol#L36
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L71
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L112
https://github.com/dcSpark/liquid-staking/pull/24

15

NOTE SEVERITY

[N01] IMPLEMENTATION VERSUS SPECIFICATION MISMATCH

The following docstrings reference a check on the ACCREDITOR_ROLE while no check exists in the
corresponding function:

• StakingSmartContract.sol, line 129

• StakingSmartContract.sol, line 140

The following docstrings reference the MINTER_ROLE and BURNER_ROLE roles which have been
deprecated in favor of the canMintAndBurn modifier:

• StakedMilkAda.sol, line 76

• StakedMilkAda.sol, line 91

The following docstring should be updated because the amount of stMilkAda received from the
stake function is not 1 to 1. (Users receive tokens proportional to their ownership of milkAda in the
staking pool):

• StakingSmartContract.sol, line 180

RECOMMENDATION

Consider updating the docstrings to reflect the implementation.

UPDATE

Fixed in pull request #17 (commit hash e50aeac68012bb444f85e23bcd43e9ce48dbf7d3), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L129
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L140
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L76
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L91
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L180
https://github.com/dcSpark/liquid-staking/pull/17

16

[N02] NON-COMPLIANCE WITH ERC20 STANDARD

StakedMilkAda is an ERC20-compatible token used to represent the amount of staked MilkAda and
the number of shares an address is entitled to. The project documentation states the following:

stMilkADA is fully compatible with the standard ERC20. However, there have been slight
modifications to the most known methods from this standard, such as transfer, transferFrom
and balanceOf. On top of that, the mint and burn methods have been protected by roles: only
the Staking Smart Contract can call those methods. While it could have been possible to
inherit the ERC20 contract from Open Zeppelin, it was more than necessary to only comply
with the interface (IERC20) since several methods have custom implementations.

The custom implementations of functions can lead to confusion and may not be handled correctly by
other protocols.

One of the functions that is non compliant is the transfer function. The ERC20 standard states the
following:

transfer: Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough
tokens to spend.

However when the transfer function is called on StakedMilkAda, the amount transferred is not the
amount passed in, but rather a number of shares calculated from that amount parameter.

RECOMMENDATION

Consider importing the OpenZeppelin ERC20 contract and overriding necessary functions. Also consider
renaming functions to clearly denote that they deviate from the ERC20 standard.

UPDATE

Acknowledged. Milkomeda’s statement for the issue:

While it could have been possible to inherit the ERC20 contract from Open Zeppelin, it was
more than necessary to only comply with the interface (IERC20) since several methods have
custom implementations.

https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.0/contracts/token/ERC20/ERC20.sol

17

[N03] INCORRECT ADDRESS RAISED IN ERROR

The assertValidator function in the Bridge contract reverts with an
InvalidValidator(msg.sender) error if the _validator parameter fails the
isValidatorOnBridge check. Because this is a public function, msg.sender will not necessarily
match the _validator parameter and the error will be misleading.

RECOMMENDATION

Consider passing the _validator parameter instead of msg.sender into the InvalidValidator
error.

UPDATE

Fixed in pull request #18 (commit hash 010fedb55dbdf27c8f029993d3efdc1cacfd5e37), as
recommended.

[N04] INCORRECTLY INDEXED EVENT PARAMETERS

In EVM-compatible blockchains, events are used to log notable actions that have occurred during a
transaction. Event parameters can be indexed to become topics in log entries, which allows applications
to efficiently query for specific events. Indexing is suggested for events that are emitted with repeated
values.

The following event parameters may benefit from adjustment:

• The milkAdaRemoved parameter in the RewardsRemovedFromPool event is a uint256 and
is unlikely to be a helpful event topic.

• The pillager parameter in the SetPillager event is not indexed, which is inconsistent with
the SetStakedMilkAda event.

RECOMMENDATION

Consider reviewing event parameters, and use the indexed keyword where appropriate.

UPDATE

Fixed in pull request #20 (commit hash 8273bbf680f3b5e2d13c1dd39e01764371574bbf), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L55
https://github.com/dcSpark/liquid-staking/pull/18
https://docs.soliditylang.org/en/v0.8.9/abi-spec.html?highlight=indexing%20events#events
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L79
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L85
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L83
https://github.com/dcSpark/liquid-staking/pull/20

18

[N05] USE OF FLOATING COMPILER VERSION PRAGMA

All contracts in this repository float their Solidity compiler versions (e.g. pragma solidity ^0.8.9).

Locking the compiler version prevents accidentally deploying the contracts with a different version than
what was used for testing. The current pragma prevents contracts from being deployed with an
outdated compiler version, but still allows contracts to be deployed with newer compiler versions that
may have higher risks of undiscovered bugs.

It is best practice to deploy contracts with the same compiler version that is used during testing and
development.

RECOMMENDATION

Consider locking the compiler pragma to the specific version of the Solidity compiler used during testing
and development.

UPDATE

Fixed in pull request #22 (commit hash d336dd1f5db7fd37618328ae4b17c4fc717f3f7a), as
recommended.

[N06] UNSPECIFIED COMPILER VERSION IN FOUNDRY CONFIGURATION

The Milkomeda team has stated that they intend to use Solidity 0.8.9 for deployment and testing,
however no solc version is specified in the project’s foundry.toml. By default Foundry will try auto-
detect the compiler version, which may not match the intended version.

RECOMMENDATION

Consider setting the solc configuration option in foundry.toml.

UPDATE

Fixed in pull request #21 (commit hash 25049c386f2760d8ed032b5f1ff7bf5b039b0147), as
recommended.

https://github.com/dcSpark/liquid-staking/pull/22
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/foundry.toml
https://github.com/dcSpark/liquid-staking/pull/21

19

[N07] NON-STANDARD NAMING SCHEME FOR PUBLIC FUNCTIONS

The Solidity documentation recommends mixedCase function names for public and external functions.
Most of the public functions in the liquid-staking project follow this convention, however the
following functions do not:

• From Bridge.sol:

– _assertValidator (public)

– _executeBridgeUpdate (public)

• From Pillage.sol:

– _executeStakingSCUpdate (public)

– _executeUpgradeTo (public)

• From StakedMilkAda.sol:

– _executePuase (public)

– _executeStakingSCUpdate (public)

– _executeUnPuase (public)

• From StakingSmartContract.sol:

– _executePillagerUpdate (public)

– _executePuase (public)

– _executeStakedMilkAdaUpdate (public)

– _executeUnPuase (public)

RECOMMENDATION

Consider changing the above functions names to mixedCase or changing the visibility of the functions to
internal or private.

UPDATE

Fixed in pull request #23 (commit hash bf4a1aaafe3e23ddc4a3762e780a1d57dc2e588e), as
recommended.

https://docs.soliditylang.org/en/v0.8.9/style-guide.html?highlight=naming#function-names
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/pillage/Pillage.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol
https://github.com/dcSpark/liquid-staking/pull/23

20

[N08] HARDHAT PROJECT AND UNIT TESTS ARE NON -FUNCTIONAL

The liquid-staking project uses Foundry as a development toolchain but still contains Hardhat
specific files. These files appear to be artifacts incorrectly left behind from the migration to Foundry.
Among these files include Hardhat tests which are out of date with the current codebase and will not
run. The following files are Hardhat specific:

• hardhat.config.js

• README.md

• testing.js

• utils.js

• staking.js

• deploy.js

RECOMMENDATION

Consider porting remaining tests to Foundry and removing Hardhat project files from the repository.

UPDATE

Fixed in pull request #32 (commit hash 2c5e04f6f1f6db4f4d4f2162699e3ce470def97f), as
recommended.

Changes unrelated to Hardhat and unit tests were introduced in pull request #32. These changes were
reviewed during the follow-on engagement.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/hardhat.config.js
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/README.md
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/test/helpers/testing.js
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/test/helpers/utils.js
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/test/staking.js
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/scripts/deploy.js
https://github.com/dcSpark/liquid-staking/pull/32
https://github.com/dcSpark/liquid-staking/pull/32

21

[N09] LACK OF NATSPEC DOCUMENTATION

The following functions within the codebase either lack docstrings or have incomplete NatSpec
documentation, such as omitting the @title, @param, or @return comments:

In Bridge.sol:

• _addTransaction

• _assertValidator

• _confirmTransaction

• _executeBridgeUpdate

• _upgrade

• bridgeValidators

• generateId

• generateUpgradeId

• isConfirmed

• isValidatorOnBridge

• setBridge

• transactionExists

In Pillage.sol:

• _executeStakingSCUpdate

• _executeUpgradeTo

• initialize

• unstakeAdmin

In StakedMilkAda.sol:

• _executePuase

• _executeStakingSCUpdate

• _executeUnPuase

• pause

• setStakingSCAddress

• unpause

In StakingSmartContract.sol:

• _executePillagerUpdate

• _executePuase

• _executeStakedMilkAdaUpdate

• _executeUnPuase

• _unstake

• _validateIfSCHasWithdrawRewards

• _withdrawRewards

• initialize

• getSharesByPooledMilkAda

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/pillage/Pillage.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol

22

• pause

• setPillager

• stake

• unpause

• unstakeAdmin

• withdrawRewards

• withdrawRewardsSC

Lack of complete documentation makes understanding and interacting with the codebase more difficult.

RECOMMENDATION

The Solidity documentation recommends NatSpec for all public interfaces (everything in the ABI).
Consider implementing NatSpec-compliant docstrings for all public and external functions.

A good example is the OpenZeppelin ERC20 contract. It follows the NatSpec guidelines, and provides
contract documentation that gives additional information about context and usage.

UPDATE

Fixed in pull request #33 (commit hash 992e2a6103d93dfece283c90d857ccfa369781aa), as
recommended.

[N10] USE OF LONG NUMERIC LITERALS

The StakingSmartContract uses a constant factorPercentage to scale various rewards
calculations. It is currently assigned as a decimal number:

uint256 public constant factorPercentage = 100000000000000000000000; // Adds
23-decimal precision

Expressions can be stored in constant variables as long as the value is constant at compile time
(e.g. 10 * (10 ** 2))). Solidity also supports scientific notation for integer literals (e.g. 1e2).

Either one of these representations makes the code cleaner, and is less error-prone than manually
typing digits.

RECOMMENDATION

Consider using scientific notation or an expression for factorPercentage.

UPDATE

Fixed in pull request #25 (commit hash e8ae3a48268b78f5c7f1d1fbc3b7ec2e74811e39), as
recommended.

https://docs.soliditylang.org/en/v0.8.9/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.0/contracts/token/ERC20/ERC20.sol
https://github.com/dcSpark/liquid-staking/pull/33
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L40
https://docs.soliditylang.org/en/v0.8.15/contracts.html?highlight=constant#constant
https://docs.soliditylang.org/en/v0.8.15/types.html#rational-and-integer-literals
https://github.com/dcSpark/liquid-staking/pull/25

23

[N11] INCONSISTENT USE OF NAMED RETURN VALUES

The following functions use named return values inconsistently with other functions in the codebase:

• The allowance function in StakedMilkAda.sol declares a named return value that is
unused.

• The getSharesByPooledMilkAda function in StakingSmartContract.sol uses the
named return value in some, but not all cases.

• The unstake function in StakingSmartContract.sol declares a named return value that is
unused.

• The _unstake function in StakingSmartContract.sol declares a named return value that
is not set and used in an event emission. This value will always be zero.

Incorrect use of named return variables complicates code and reduces readability.

RECOMMENDATION

Consider using named return values in every codepath when they are defined, and removing any cases
of unused named return values.

UPDATE

Fixed in pull request #26 (commit hash 19829216bf4dd7537246da5123a3739d1ec8ab94), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L184
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L219
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L260
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L329
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L365
https://github.com/dcSpark/liquid-staking/pull/26

24

[N12] TYPOGRAPHICAL ERRORS

The following lines contain typographical errors:

• addresss should be address:

– StakedMilkAda.sol, line 123

– StakedMilkAda.sol, line 144

– StakedMilkAda.sol, line 145

– StakedMilkAda.sol, line 167

– StakedMilkAda.sol, line 182

• antoher should be another:

– StakedMilkAda.sol, line 121

– StakedMilkAda.sol, line 142

• balace should be balance:

– StakingSmartContract.sol, line 255

• decreses should be decrease:

– StakedMilkAda.sol, line 207

• descreased should be deducted:

– StakedMilkAda.sol, line 208

• percetage should be percentage:

– StakingSmartContract.sol, line 382

– StakingSmartContract.sol, line 386

– StakingSmartContract.sol, line 388

– StakingSmartContract.sol, line 389

• Puase should be Pause:

– StakedMilkAda.sol, line 372

– StakedMilkAda.sol, line 379

– StakedMilkAda.sol, line 390

– StakedMilkAda.sol, line 397

– StakingSmartContract.sol, line 426

– StakingSmartContract.sol, line 433

– StakingSmartContract.sol, line 444

– StakingSmartContract.sol, line 451

• Retrives should be Retrieves:

– StakedMilkAda.sol, line 180

• shars should be shares:

– StakedMilkAda.sol, line 77

• stakinSC should be stakingSC:

– Bridge.sol, line 165

• thet should be that:

– Bridge.sol, line 169

• trasaction should be transaction:

– Bridge.sol, line 170

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L123
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L144
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L145
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L167
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L182
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L121
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L142
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L255
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L207
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L208
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L382
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L386
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L388
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L389
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L372
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L379
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L390
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L397
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L426
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L433
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L444
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L451
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L180
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L77
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L165
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L169
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Bridge.sol#L170

25

• whenver should be whenever:

– StakingSmartContract.sol, line 201

RECOMMENDATION

Consider making the suggested changes to fix the typographical errors.

UPDATE

Fixed in pull request #27 (commit hash 31caa306b46718ef1bd1e089f6f45e1e1ffcbe4c) as
recommended.

[N13] UNUSED ERROR AND ENUM VALUES

The following error and enum values are defined but unused:

• The enum value Status.ALREADY_EXECUTED in Base.sol

• The CallToBridgeFailure error in Base.sol

Unused code reduces the overall clarity of a codebase.

RECOMMENDATION

Consider removing error and enum values that are not used.

UPDATE

Fixed in pull request #28 (commit hash 57ac0ef235ae325f4606e7208343fad02946b472), as
recommended.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L201
https://github.com/dcSpark/liquid-staking/pull/27
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Base.sol#L30
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/base/Base.sol#L11
https://github.com/dcSpark/liquid-staking/pull/28

26

[N14] LACK OF INITIALIZATION ADDRESS CHECKS

The initialize functions in the StakingSmartContract, Pillage, and StakedMilkAda
contracts set address storage variables without input validation:

• The Pillage contract’s initialize function sets bridge and stakingSC without verifying
that the _bridge and _stakingSC parameters are smart contract addresses.

• The StakedMilkAda contract’s initialize function sets bridge without verifying that the
_bridge parameter is a smart contract address.

• The StakingSmartContract contract’s initialize function sets bridge and
stakedMilkAda without verifying that the _bridge and _stakedMilkAda parameters are
smart contract addresses.

In the Pillage and StakedMilkAda contracts, the stakingSC address can be updated with validator
majority by calling the setStakingSC function. However, the bridge and stakedMilkAda addresses
cannot be updated with a function call in any of the contracts. Initializing the bridge, or
stakedMilkAda address to an address that is not a contract will render the system inoperable until an
upgrade is applied that can modify the storage variables.

OpenZeppelin’s Address contract contains the isContract function which can be used to verify an
address is a smart contract. A check using the isContract function will eliminate the possibility of
initializing any of these parameters to the zero address or an EOA.

RECOMMENDATION

Consider adding checks to the three initialize functions to ensure that the _bridge, _stakingSC,
and _stakedMilkAda parameters are smart contract addresses.

UPDATE

Not fixed. At the time of review, no parameter checks have been added to the initializer functions. The
_stakingSC parameter is provided by precomputing the address of the StakingSmartContract.
Although Milkomeda points out in their statement that _stakingSC is precomputed, a check can still
be added to ensure the parameter is not zero. The other two parameters, _bridge and
stakedMilkAda, can use the isContract function to ensure those parameters correspond to existing
smart contracts.

Milkomeda’s statement for this issue:

We need to pre-compute the address of the staking contract before it’s deployed, so we can
create dead shares and have the StakedMilkAda contract mint the (dead) shares first by
validating that the caller is the Liquid Staking address. Due to this, adding initialization
address checks (specifically) to the Liquid Staking contract wouldn’t achieve the goal of
ensuring that the address passed is indeed a smart contract address.

https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/pillage/Pillage.sol#L29
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakedMilkAda/StakedMilkAda.sol#L66
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/stakingSC/StakingSmartContract.sol#L116
https://github.com/dcSpark/liquid-staking/blob/d7496b1c4bce8dba49f3309ce0aed846d2b10fe9/src/pillage/Pillage.sol#L117
https://docs.openzeppelin.com/contracts/4.x/api/utils#Address-isContract-address-

27

APPENDIX

APPENDIX A: SEVERITY DEFINITIONS

Severity Definition

Critical This issue is straightforward to exploit and is likely to lead to catastrophic impact for client’s
reputation and can lead to financial loss for client or users.

High This issue is difficult to exploit and is likely to lead to catastrophic impact for client’s
reputation and can lead to financial loss for client or users.

Medium This issue is important to fix and puts a subset of users’ data at risk and is possible to lead to
moderate financial impact.

Low This issue is not exploitable in a recurring basis and cannot have a significant impact on
execution.

Note This issue does not pose an immediate risk but is relevant to security best practices.

28

APPENDIX B: FILES IN SCOPE

contracts
├── base
│ ├── Base.sol
│ └── Bridge.sol
├── mock
│ ├── MockStakerNoSupport.sol
│ └── MockStakerSupport.sol
├── pillage
│ └── Pillage.sol
├── stakedMilkAda
│ ├── IStakedMilkAda.sol
│ └── StakedMilkAda.sol
└── stakingSC
 ├── IStakingSmartContract.sol
 └── StakingSmartContract.sol

29

APPENDIX C: FOLLOW-ON REVIEW

The Milkomeda team engaged AE to review additional changes to the Liquid Staking codebase after the
conclusion of the fix review. AE auditors reviewed additional changes to the Liquid Staking codebase,
and relayed feedback to the Milkomeda team.

AE reviewed the following during the follow-on engagement:

• PR #19

• PR #32

• The AccreditToPool function at commit
06210a0591087dc64ea3a0d9c09a5c12773d327b

• The calculateDeposit function at commit
06210a0591087dc64ea3a0d9c09a5c12773d327b

PR #19 addressed the inconsistencies in rewards calculations identified in finding L01 and included other
refactoring in StakingSmartContract.sol (which was renamed to LiquidStaking.sol). This
review focused on the changes unrelated to L02. Some code-cleanliness suggestions were relayed to the
Milkomeda team, and no findings were identified that impact the security of the protocol.

PR #32 removed Hardhat artifacts identified in finding N08 and included other refactoring. This review
focused on the changes unrelated to the Hardhat project artifacts. No findings were identified that
impact the security of the protocol.

During the follow-on review, the Milkomeda team identified a bug in the calculateDeposit function.
The bugfix was introduced in PR #44. AE reviewed the fix, and recommended adding tests to exercise
this calculation to ensure correct behavior in the future. AE did not identify other security vulnerabilities
in AccreditToPool or calculateDeposit.

After receiving feedback, the Milkomeda team implemented suggestions in PR #41. AE reviewed this pull
request, and relayed a final round of feedback to the Milkomeda team.

With the exception of the bug identified by the Milkomeda team, no findings were identified that impact
the security of the protocol.

https://github.com/dcSpark/liquid-staking/pull/19
https://github.com/dcSpark/liquid-staking/pull/32
https://github.com/dcSpark/liquid-staking/blob/06210a0591087dc64ea3a0d9c09a5c12773d327b/src/liquidstaking/LiquidStaking.sol#L173
https://github.com/dcSpark/liquid-staking/blob/06210a0591087dc64ea3a0d9c09a5c12773d327b/src/liquidstaking/LiquidStaking.sol#L860
https://github.com/dcSpark/liquid-staking/pull/19
https://github.com/dcSpark/liquid-staking/pull/32
https://github.com/dcSpark/liquid-staking/pull/44
https://github.com/dcSpark/liquid-staking/pull/41

	Table of Contents
	Executive Summary
	Fix Review Update
	Fix Review Process

	Follow-on Review Update
	Vulnerability Statistics
	Fixes Summary
	Audit Objectives
	Observations
	System Overview
	Tokens
	milkAda
	stMilkAda

	User Categories
	Users
	Privileged Roles
	Validators

	System Components
	Access Control Model and Validator Voting
	StakedMilkAda
	StakingSmartContract
	Pillage

	Findings
	Critical Severity
	[C01] Contract management functions lack access control
	Recommendation
	Update

	High Severity
	[H01] Share arithmetic unfairly favors early depositors
	Recommendation
	Update

	[H02] Incorrect rounding and defaulting when staking and unstaking
	Recommendation
	Update

	Medium Severity
	[M01] Transaction voting with mismatched transaction
	Recommendation
	Update

	Low Severity
	[L01] Inconsistent rewards calculations
	Recommendation
	Update

	[L02] Transaction IDs are insecure
	Recommendation
	Update

	Note Severity
	[N01] Implementation versus specification mismatch
	Recommendation
	Update

	[N02] Non-compliance with ERC20 standard
	Recommendation
	Update

	[N03] Incorrect address raised in error
	Recommendation
	Update

	[N04] Incorrectly indexed event parameters
	Recommendation
	Update

	[N05] Use of floating compiler version pragma
	Recommendation
	Update

	[N06] Unspecified compiler version in Foundry configuration
	Recommendation
	Update

	[N07] Non-standard naming scheme for public functions
	Recommendation
	Update

	[N08] Hardhat project and unit tests are non-functional
	Recommendation
	Update

	[N09] Lack of NatSpec documentation
	Recommendation
	Update

	[N10] Use of long numeric literals
	Recommendation
	Update

	[N11] Inconsistent use of named return values
	Recommendation
	Update

	[N12] Typographical errors
	Recommendation
	Update

	[N13] Unused error and enum values
	Recommendation
	Update

	[N14] Lack of initialization address checks
	Recommendation
	Update

	Appendix
	Appendix A: Severity Definitions
	Appendix B: Files in Scope
	Appendix C: Follow-on Review

