

MILKOMEDA SECURITY ASSESSMENT
October 14, 2022

Prepared For:
 Nico Arqueros
Prepared By:
 Chris Masden, Jasper Clark

Changelog:

September 29, 2022 Initial report delivered
October 14, 2022 Final report delivered

2

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 3

FIX REVIEW UPDATE .. 3

FIX REVIEW PROCESS .. 3

OBSERVATIONS.. 3

SYSTEM OVERVIEW ... 4

CANONICAL TOKEN ... 4
ERC1967 PROXY... 4
TOKEN CONVERSION ... 4

VULNERABILITY STATISTICS ... 5

FIXES SUMMARY .. 5

FINDINGS ... 6

MEDIUM SEVERITY ... 6
[M01] Unchecked transfer .. 6

LOW SEVERITY ... 7
[L01] Active token pairs can become inactive ... 7

NOTE SEVERITY .. 8
[N01] commissionDecimals can be set incorrectly .. 8
[N02] Use of floating compiler version pragma .. 8
[N03] Gas savings ... 9
[N04] Reentrant functions... 9

APPENDIX .. 10

APPENDIX A: SEVERITY DEFINITIONS .. 10
APPENDIX B: FILES IN SCOPE .. 11

3

EXECUTIVE SUMMARY

This report contains the results of Arbitrary Execution’s assessment of the Milkomeda Canonical Bridge
Asset system. The system allows for standardization of token transfer interoperability between different
chains and bridges.

Two Arbitrary Execution engineers conducted this review over a 1-week period, from September 19,
2022 to September 23, 2022. The audited branch was main (commit hash
450ae7a3081fcbc781f4ce4637700013fbbb7b31) in the dcSpark/milkomeda-token-merger
repository. The Solidity files in scope for this audit included all contracts in the contracts/ directory
with the exception of contracts in the dev/ directory. The complete list of files is in Appendix B.

A detailed manual review of the codebase was performed with a focus on protocol-specific security
issues. Static analysis was also performed using Slither.

The assessment resulted in findings ranging in severity from medium to note (informational). The finding
with a severity level of medium identified a scenario where it’s possible to unintentionally lock funds in
the contract without the ability to withdraw them. The note findings contain observations regarding
coding best practices and opportunities for gas optimizations.

FIX REVIEW UPDATE

The Milkomeda team has fixed all major issues identified in the engagement. The full breakdown of fixes
can be found in the Fixes Summary section.

FIX REVIEW PROCESS

After receiving fixes for the findings shared with Milkomeda, the AE team performed a review of each
fix. Each pull request was scrutinized to ensure that the core issue was addressed, and that no
regressions were introduced with the fix. A summary of each fix review can be found in the Update
section for a finding.

OBSERVATIONS

The core logic of the protocol is in the TokenMerger contract. The other contracts crucial to the system
involve the CanonicalToken, an ERC20 token built on top of the well established OpenZeppelin ERC20
library, and an ERC1967 proxy contract that is also built on top of OpenZeppelin libraries. All the
contracts in scope were straightforward to understand and had logically grouped functions that made
understanding the different components in the contracts easy to understand.

There are three undesirable issues the Milkomeda team is attempting to address with this system: * The
fragmentation of liquidity by having various bridge assets can lead to a greater amount of slippage when
performing a token swap. This would result in the user paying a higher fee. * Having multiple assets can
be very confusing to users and leads to a bad user experience. * The protocol is meant to lower risk to a
user when using a bridge. The way it’s able to do this is by spreading the risk across multiple bridges

https://github.com/crytic/slither

4

instead of picking the “best” bridge as it’s very difficult if not impossible to determine which is the best
bridge.

A commission is collected by the protocol and can help cover lost funds in the event of a bridge exploit
that results in stolen funds.

SYSTEM OVERVIEW

CANONICAL TOKEN

A standard ERC20 token built using OpenZeppelin libraries. A public mint function was added with an
onlyOwner function modifier that only lets the owner of the TokenMerger proxy mint tokens via the
mintCanonicalToken function.

ERC1967 PROXY

ERC1967 compliant proxy that uses OpenZeppelin libraries. All function calls to the proxy get delegated
to the implementation address with the exception of the transferOwnership, getAdmin,
upgradeTo, and getImplementation functions.

TOKEN CONVERSION

This component of the system is focused around the conversion of fragmented tokens to canonical
tokens and vice versa. Canonical tokens are the tokens that are minted by the protocol. Fragmented
tokens are the tokens issued by individual bridges.

5

VULNERABILITY STATISTICS

Severity Count

Critical 0

High 0

Medium 1

Low 1

Note 4

FIXES SUMMARY

Finding Severity Status

M01 Medium Fixed in pull request #10

L01 Low Fixed in pull request #14

N01 Note Fixed in pull request #11

N02 Note Fixed in pull request #12

N03 Note Fixed in pull request #15

N04 Note Fixed in pull request #13

https://github.com/dcSpark/milkomeda-token-merger/pull/10
https://github.com/dcSpark/milkomeda-token-merger/pull/14
https://github.com/dcSpark/milkomeda-token-merger/pull/11
https://github.com/dcSpark/milkomeda-token-merger/pull/12
https://github.com/dcSpark/milkomeda-token-merger/pull/15
https://github.com/dcSpark/milkomeda-token-merger/pull/13

6

FINDINGS

MEDIUM SEVERITY

[M01] UNCHECKED TRANSFER

The withdrawCommission function performs an ERC20 token transfer to collect the fees accumulated
from users of the protocol. If an ERC20 token fails to transfer funds from one address to another, there
are two common outcomes. The first is that an exception will be raised and will result in a reverted
transaction. The second is that the boolean return value from transfer will return false. In
withdrawCommission, the return value from the transfer is not checked and can lead to a specified
amount of tokens being subtracted from the commissionTreasury mapping, even if a transfer fails.
This will result in locked funds that will be unable to be withdrawn from the protocol.

RECOMMENDATION

Consider checking the return value of the transfer function and raise an exception if false is
returned.

UPDATE

Fixed in pull request #10 (commit hash 7f845bc0a1ead0ec6df9f58417c69e22410fa87b), as
recommended.

https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L255
https://github.com/dcSpark/milkomeda-token-merger/pull/10

7

LOW SEVERITY

[L01] ACTIVE TOKEN PAIRS CAN BECOME INACTIVE

The blocksToWait storage variable is used in the initialDelayPassed modifier to determine when
a pair of fragmented and canonical tokens can be converted. A limitation of the current implementation
is that blocksToWait is used globally and effects all fragmented and canonical pairs. This can cause
already active pairs to become inactive and would prevent users of the protocol from converting
between the token pairs until after a specified numbers of blocks has occurred. This can result in a
negative user experience as this behavior is unexpected.

RECOMMENDATION

Consider storing the height at which the conversion protocol is active on each FragmentedToken.

UPDATE

Fixed in pull request #14 (commit hash 7f52e4dd34c46f84c6b314ce92668f817643cdbc), as
recommended.

https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L109-L115
https://github.com/dcSpark/milkomeda-token-merger/pull/14

8

NOTE SEVERITY

[N01] COMMISSIONDECIMALS CAN BE SET INCORRECTLY

The commissionDecimals storageVariable is used in conjunction with commissionPercentage to
calculate the commission. The current approach can lead to an invalid combination of
commissionDecimals and commissionPercentage values. Additionally, the code can be simplified
by choosing a fixed decimal value.

RECOMMENDATION

Consider making commissionDecimals a constant variable with a value of 1e18 and changing the
type of the commissionPercentage variable to uint256. This is a common practice that will allow
for easier calculations when determining the amount of commission to collect on a token conversion.

UPDATE

Fixed in pull request #11 (commit hash 942b67133c2af8a03efff4bdd42322257022f8b5), as
recommended.

[N02] USE OF FLOATING COMPILER VERSION PRAGMA

All contracts in this audit float their Solidity compiler versions (e.g. pragma solidity >=0.8.4).
Locking the compiler version prevents accidentally deploying the contracts with a different version than
what was used for testing. It is best practice to deploy contracts with the same compiler version that is
used during testing and development.

RECOMMENDATION

Consider locking the compiler pragma to the specific version of the Solidity compiler used during testing
and development.

UPDATE

Fixed in pull request #12 (commit hash a6492f3c09db8f6112cb0c04ec375d9f409069ca), as
recommended.

https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L61
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L347-L349
https://github.com/dcSpark/milkomeda-token-merger/pull/11
https://github.com/dcSpark/milkomeda-token-merger/pull/12

9

[N03] GAS SAVINGS

Within the code base, several opportunities for gas optimization have been identified: * Line 242 in the
withdrawCommission function contains an unnecessary require check as the compiler specified in
hardhat.config.ts (0.8.15) will insert underflow guards around the subtraction on line 244. * The
onlyAllowedPair function modifier can be made more efficient by using a storage pointer. * Solidity
compiler optimization is not enabled. * Line 170 in the removeFragmentedToken function clears a
map entry by writing 0's to the location of the ConversionProtocol in storage instead of using the
delete keyword. * The fragmentedToken member of the ConversionProtocol struct is being
used to determine if a ConversionProtocol struct has been initialized. However, this can be
determined by checking to see if the conversionProtocol mapping struct has a value of 0.

RECOMMENDATION

Consider making the suggested changes to reduce gas usage.

UPDATE

Fixed in pull request #15 (commit hash 5ad7ed17a8e9dcd61be9eb7c2f184c453b94bc61), as
recommended.

[N04] REENTRANT FUNCTIONS

The convertToCanonical function and the convertToFragmented function do not follow the
checks-effects-interactions pattern that is recommended for functions that can be reentered. The
_addToTreasury internal function call happens after both ERC20 external function calls. The potential
consequence of a malicious actor exploiting this behavior is minimal due to both functions transferring
tokens from msg.sender to the contract before transferring the matching token to the specified
receiver. At worst, this would cause the contract to hold additional tokens that have not be added to the
commissionTreasury and would not allow withdrawing of the additional tokens.

RECOMMENDATION

Consider following the checks-effects-interactions pattern by calling _addToTreasury before the
external function calls.

UPDATE

Fixed in pull request #13 (commit hash c5eccc173aeefa08d75a13a812c35c13b7c4d29c), as
recommended.

https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L242
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L244
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L89
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L170
https://docs.soliditylang.org/en/v0.8.15/types.html?highlight=delete#delete
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L13-L19
https://github.com/dcSpark/milkomeda-token-merger/pull/15
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L281-L287
https://github.com/dcSpark/milkomeda-token-merger/blob/450ae7a3081fcbc781f4ce4637700013fbbb7b31/contracts/TokenMerger.sol#L311-L317
https://github.com/dcSpark/milkomeda-token-merger/pull/13

10

APPENDIX

APPENDIX A: SEVERITY DEFINITIONS

Severity Definition

Critical This issue is straightforward to exploit and is likely to lead to catastrophic impact for client’s
reputation and can lead to financial loss for client or users.

High This issue is difficult to exploit and is likely to lead to catastrophic impact for client’s
reputation and can lead to financial loss for client or users.

Medium This issue is important to fix and puts a subset of users’ data at risk and is possible to lead to
moderate financial impact.

Low This issue is not exploitable in a recurring basis and cannot have a significant impact on
execution.

Note This issue does not pose an immediate risk but is relevant to security best practices.

11

APPENDIX B: FILES IN SCOPE

CanonicalToken.sol
ERC1967Ownable.sol
FragmentedToken.sol
TokenMerger.sol
TokenMergerProxy.sol

